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Abstract--The effects of second-order terms on the velocity and temperature jumps at a wall are 
obtained by a physical derivation. The analysis uses the concepts of effective mean free paths for 
momentum and energy transfer; the effective mean free paths are obtained from known viscosities 
and thermal conductivities. The second-order slip flow analysis is applicable at somewhat lower 
pressures than is the first-order analysis and applies to non-monatomic as well as to monatomic gases. 
Severalillustrative examples, including fully developed flow and heat transfer in a tube are considered. 
Differences between the first- and second-order corr~tions on the order of 20 per cent were noted in 

the region for which the analysis appears applicable. 

NOMENCLATURE M + , 
A, area (Fig. 1); 
a, accommodation coefficient [equation M ; ,  

(40)]; 
c~, specific heat at constant pressure; m, 
cv, specific heat at constant volume; Nu, 
E, energy crossing dA per unff area per Nuc, 

unit time from a given direction; n, 
E +, total energy crossing dA per unit area Pr, 

per unit time from above; p, 
E- ,  total energy crossing dA per unit area Ap, 

per unit time from below; Ape, 
F, fraction of  molecules reflected diffusely 

[equation (19)]; 
f ,  Maxwellian distribution function for q, 

molecular speeds [equation (6)]; 
/, internal energy per unit mass other R, 

than translational energy; r, 
k, thermal conductivity; T, 
1, molecular free path; U., 
lej, effective free path for internal energy u~, 

transfer; v, 
le,m, effective free path for momentum vz, 

transfer; 
le,t, effective free path for translational x, y, z, 

energy transfer; 
ln, hard-sphere free path, 
Mx, x-component of  momentum crossing 

dA per unit time per unit area from a 
given direction; 

total x-momentum crossing dA per 
unit area per unit time from above; 
total x-momentum crossing dA per 
unit area per unit time from below; 
molecular mass; 
Nusselt number, 2qoro/(Tw -- Tb)k ; 
continuum Nusselt number; 
number density, 
Prandtl number, c2,t~/k; 
pressure; 
actual pressure drop; 
pressure drop for continuum flow 
at velocity at which actual pressure 
drop is Ap; 
heat transfer per unit area per unit 
time; 
gas constant; 
tube radius; 
temperature; 
x-component of  mean velocity; 
x-component of  molecular velocity; 
molecular speed; 
portion of  x-velocity component that 
is random [equation (3)]; 
co-ordinates (Fig. 1). 

Greek symbols 
a, thermal diffusivity; 
~', c2,/cv; 
0, spherical co-ordinate (Fig. 1); 
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K, 
/z, 
P, 
7", 

.Q, 
097 

Boltzmann's constant; 
viscosity; 
density; 
shear stress; 
spherical co-ordinate (Fig. 1); 
defined by equation (14); 
angular velocity of dA; 

Subscripts 
b, 
i, 

m,  
F, 
t, 
~), 

W, 
O, 

1, 2, 

bulk; 
referring to internal energy other than 
translational; 
monatomic; 
reflected; 
referring to translational energy; 
in velocity range dv at velocity v; 
wall; 
referring to point xo, yo, zo (Fig. 1) or 
to gas at wall; 
referring to planes 1 and 2; 

Superscript 
-,  overbar designates mean value. 

INTRODUCTION 
SLIP and temperature-jump boundary conditions 
have been used with considerable success in the 
analysis of slightly rarefied gases [1]. In this 
method of analysis, the continuum equations of 
momentum and energy are used throughout the 
gas, and the effects of the walls are taken into 
account by using appropriate boundary con- 
ditions. For a rarefied gas with velocity and 
temperature gradients, the velocity and tempera- 
ture of the gas next to the wall will differ from 
those of the wall. The gas next to the wall is 
made up of molecules coming from the wall and 
from a distance a mean free path away from the 
wall, so that its velocity and temperature will be 
between those of the wall and of the gas a mean 
free path away. If  the mean free path is small, 
the velocity and temperature jumps will be 
negligible. 

In the usual analysis, the velocity and tempera- 
ture jumps at the wall are assumed to be pro- 
portional to the normal velocity and tempera- 
ture gradients, tha t  is a good assumption if the 
velocity and temperature profiles are essentially 
linear over a mean free path, as they will be if 
the gas is but slightly rarefied. At somewhat 

lower pressures, however, where the profiles may 
be non-linear over a mean free path, the jumps 
at the wall would be expected to be functions 
of the higher order normal and tangential 
derivatives. 

Second-order jump boundary conditions have 
been obtained in reference [2] by using Burnett's 
approximate solution of the Boltzmann equation. 
Burnett's equations, however, have been found 
to give results that are not always in agreement 
with experiment [1]; in fact, in many cases the 
Navier-Stokes equations were found to be 
superior. Thus, attempting to obtain second- 
order jump boundary conditions by using a 
comparatively simple physical derivation* 
appears to be worthwhile. The Boltzmann 
equation will not be used herein, but the mo- 
mentum and energy carried across an area 
element by molecules that, in effect, had their 
last collision a distance equal to an effective 
mean free path from the element will be con- 
sidered. The effective mean free path, which has 
different values for momentum and heat 
transfer and which also differs from the usual 
hard-sphere mean free path, is then related to 
experimental viscosities and thermal conduc- 
tivities. The results differ somewhat from those 
of reference 2. 

The expressions for the velocity jump at a wall 
will be derived in the next section, after which the 
corresponding temperature jump will be con- 
sidered. The results, which use Eucken's 
approximation [4], are applicable to both 
monatomic and non-monatomic gases. Inter- 
actions between the velocity and temperature 
fields, such as thermal creep, are neglected. 

MOMENTUM TRANSFER 
Consider the x-component of momentum 

carried by molecules across an area element dA 
located at xo, yo, zo. The plane of dA is normal 
to the z-axis (Fig. 1). I f  all the particles were 
traveling in a direction making an angle 0 with 
the z-axis and a polar angle % the number of 
particles in the velocity range between v and 
v + dv that pass though dA per second would 
be nolo dv v cos 0 dA. The quantity no is the 
number density of particles at xo, yo, zo, and fo 

* A related analysis for thermal radiation in gas was 
recently carried out by the author (3). 
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FIG, I. Derivation of momentum and energy relations. 

is the corresponding velocity distribution func- 
tion. For an isotropic gas, the fraction of 
particles with velocities that make an angle 
between 0 and 0 + dO with the z-axis and a polar 
angle between 9 and q0 + dq~ is sin 0 dO d~]4~r. 
Thus, the actual number of particles in the 
velocity range dv that pass through dA per unit 
time at an angle with the z-axis between 0 and 
0 + dO and a polar angle between ~0 and 9 + d9 
is 

dZv = nofo dv v cos 0 dA sin 0 dO d99/4rr (1) 

To carry out the analysis, assume first, that the 
mean velocity of the stream is uniform and in the 
x-direction. (The effect of velocity gradients will 
be considered subsequently.) Then the x-mo- 
mentum carried across dA by molecules that are 
in the velocity range dv and move at an angle to 
the z-axis between 0 and 0 + dO and at a polar 
angle between 9~ and 9~ + d~0 is 

dMx,v = mux,o nofo dv v cos 0 dA sin 0 dO dq0/4rr 
(2) 

where m is the molecular mass and uz,0 is the 
x-component of the velocity in the range dr. 

Let 
ux,o = Uz,o + v~,o (3) 

where Ux,0 is the mean x-component of 
velocity at 0, and vz,o is the portion of the 
x-component of velocity that is random. The 
random portion will have a Maxwellian velocity 
distribution. By use of equation (3), equation (2) 
can be integrated over all velocities to give 
H , M - - 2 R  

dMx = dA (sin 0 cos 0 d0 dq0/4~r) .f~o mux,o nofo de 

= dA (sin 0 cos 0 dO dg/4~r ) mno × 

(U~,o S~ vfo dv + sin 0 cos q0 j'~ v~f0 dv) 
(4) 

where t,~ is written in spherical co-ordinates as 

vz = v sin 0 cos q~ (5) 

and 

(2)1/2 { m_] a/~ (--  (112) my2 ) 
v 2 exp (6) 

fo = ~KTo] xT0 

Equation (6) gives, of course, the Maxwellian 
distribution function for molecular speeds. 

Equation (4) becomes 

dMx : [dA (sin 0 cos 0 dO d~0/4~r) no~o] [mUx,o 

+ (3/8) ~r rngo sin 0 cos qg] (7) 

The last term in this equation is obtained by use 
of the relation 

v 2 = (3•8) ~r v -2 

which can be obtained by using equation (6). 
Equation (7) gives the x-momentum transferred 
per unit time across dA by molecules whose 
velocities make an angle between 0 and 0 + d0 
with the z-axis and a polar angle between 9o and 
~o + do0, if the gas is moving at uniform velocity. 

If equation (1) is integrated over all values of 
v, the quantity in the first brackets in equation (7) 
is obtained. Thus that quantity gives the number 
of molecules that cross dA from the given angle 
range per unit time, and the quantity in the 
second brackets can be interpreted as the 
effective x-momentum carried per molecule. 
If the mass velocity is not uniform, the molecules 
will carry momentum that differs from 
m Uz,o + (318) ~rmfo sin 0 cos ~0. Molecules that, in 
effect, had their last collision a distance le,m 
(effective mean free path for momentum 
transfer) from dA will carry x-momentum 
equal to mUx,t + (3•8) zrmOt sin 0 cos 90. Thus, 
equation (7) becomes 

dMx = IdA (sin 0 cos 0 dO d99/4zr) noOo] [rnU~,t + 

(3/8) zr mt~t sin 0 cos q0] (8) 

The mass velocity Ux, z at a point x,y,z  (Fig. 1) 
can be related to conditions at xo, yo, zo by 
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expanding Ux in a three-dimensional Taylor series about x0, Y0, z0. This expansion gives 

U ~ . l  = - 
,_~ 11! 0 -. ,~ 

h = 0 

If the binomial theorem is applied twice to the factor in brackets, 

+ ~ ~/ (z_i_zo),,-W(y_yo)W S(x xo)S ,__  ~hU, 
Uz,t (9) ~ 2 

x...., , . . . , , . . . . ,  ( f i :  ;~! (i;: :: :: s ) i s i  ~Ozh-.w e,.v,o .~ e)x.,~o 
h = 0  w : 0  ~ -  0 

Equation (9) can be written in spherical co-ordinates le,m, O, cf with origin at dA by setting 

x -- xo -- le,m sin 0 cos % y .... Y0 --=/e,m sin 0 sin % z -- z0 = le.,,~ cos 0 

It should be emphasized that le,m will, in general, be greater than the distance to the actual point 
of the last collision because of the persistence of velocities. That is, after a collision many of 
the molecules tend to continue traveling in the direction they traveled before collision. Equation 
(9) becomes, in spherical co-ordinates, 

U z , =  ~ "  ~ l)mc°sh-WOsinwOsinw-s~c°ss~ ........ ~ i')hUx 
(10) 

h 0 w :0  s - -O 

In equation (8), the term (3/8) 7rm#z sin 0 cos ~ gives the contribution of the random molecular 
velocities to the momentum transfer. If temperature gradients in the flow direction are assumed 
to be small, that term will drop out when we integrate over direction to get the total x- 
momentum passing through dA from above. If thermal gradients in the flow direction are large, 
that term may produce thermal creep effects, but those effects are neglected here. Thus, for 
simplicity, the last term in equation (8) will be omitted in the remainder of the analysis. 

Substituting equation (10) in equation (8) and averaging over all values of/e,m give 

m,o#o dA ~,,, s!nW4 ! O.c°sh-~+ 1_ 0 si_nw 7' v cos' (/- i e"Uz 
dM .... 4?r /.2.., ./..~ / ~ (h - -w) ! (w- - s ) ! s !  - d0dc/, >: i k)Zl~:w ~)yib ,~. ~)x~ o 

h 0 w 0 s ~ O  

(11) 

where the overbar on ~,,,, signifies an averaged value. To calculate ~eh, m in terms of ]e,,, the 
distribution function ¢ for molecular free paths must be known. Jeans [5] has shown that ¢ is 
given approximately by 

1 l 

¢ := c-] exp (-- c]) 

where c is a constant on the order of one, which accounts for the fact that i varies with velocity. 
Thus, 

~c] o --c dl=h!(c])  h 

This form is also assumed to apply to le,m. Thus, 

~.,, ==h!l~.,,, (12) 
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where the constant c has been absorbed in the value of [e.m, (le,m will later be related to known 
viscosities). Substituting equation (12) in (11) and integrating to obtain the total x-momentum 
passing through dA from above results in 

) dM + mnof~o dA in,,m h! { ~nUx 
-- 4zr _.~(h--w~.(w--s)!s! \Szn-WSyW-'s~x s o 

h = 0  w = 0  s = O  

c°sh-W+lOsinW-Sq)dq~dO -- P ° v ° d A 2  2 2 1 6 r r  Q (h. w, s) le ,'nm ( 

where 

./2 [.2 sin w+l 0 
× jo jo 

h = 0  w = O  s = 0  

OhUx ) (13) 
Oz h-w Oy w-s ~x s o 

[1 -4- (--1) w-s] [1 + (--1) s] h! P[ (h  - -  w + 2)/21 r t ( w  - s + 1)/21 P[(s + 1)/2] 
Q (h, w, s) = (h -- w)! (w -- s)l s! P[(h + 4)/2] (14) 

and mno is replaced by the mass density p0. The symbol F stands for the gamma function. 
In order to obtain the x-momentum passing through dA from below, we let 0 go from ~r/2 to 
• r, instead of from 0 to rr/2, and change the sign of the result: 

-- le.m \Szh-W 8yW-S OXS]o" (15) 16~r (--1)h-wD (h' w's) "h [ OhUx ] 
h = 0  w = 0  s = 0  

The shear stress acting on dA is the net x-momentum transferred per unit area through 
dA from above: 

o r  

"/'0 - -  167r /~.., z_.., 
h = 0  w = 0  s = 0  

dM+~ -- dM; 
"to = dA 

( \ 

[1 (_ 1)h-w] (h, w, .) l:,., ] l Ozn-W ~yW-S Ox s/o (16) 

Next the velocity slip at a tangentially moving wall that is immediately below, but not touching 
the area dA will be obtained. In order to do this, instead of a wall, a uniform gas below dA 
moving at the velocity Uw is first considered. Equation (15) then yields for d M ;  

dill; pof~o dA Q (0, O, O) Uw 1 
- -  167r = 4 pof~o dd Uw (17) 

If the term for h = 0 is extracted from the summation in equation (13) and equation (17) is 
subtracted from that equation, there results 

oo h w 

dM+~ dM; 4 pof~o dA (Uo Uw) + poeo dA ~ { ~Ux ] 
- -  : - -  le, m k ~ g h - w  O y w - s  aXS]O" 

~ /_.., o (h, w, s) T,~ 

h = l  w = O  s = O  

(18) 
Consider next a wall moving at the velocity Uw, rather than a uniform gas, to be below d,4. 

Then the fraction of the momentum of the molecules relative to the wall, which is, on the 
average, given up to the wall, is 

dM + -- dMx, r 
F---- dM+ _ d M ;  (19) 
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where dMx,r is the momentum carried by reflected molecules. The momentum difference 
in the denominator of equation (19) is for a wall with perfect momentum accommodation and is 
taken to be the same as that which occurs when a uniform moving gas is below dA. The quantity 
F is sometimes interpreted as the fraction of molecules reflected diffusely, the rest being 
reflected specularly. The quantity dM;  --dMz,,. ,  which is the net x-momentum transferred 
through dA from above, is dA times the shear stress. The shear stress is given by equation (16), 
since that equation is assumed to apply throughout the gas; the effect of the wall is accounted for 
by the jump boundary conditions. Setting r0dA := dM,  t --dMa:,r in equation (16). substi- 
tuting that equation and equation (18) in (19), and solving for Uo U,, restllt in 

U0 Uw 4W:=- . . . . . . / _ . . . ,  ~.~ F l .... \~zn_ w -  - ~iyW-S c3x s]- 0" (20) 
h I w = 0  s = 0  

If we retain only terms through second order (terms containing second derivatives), equation 
(20) becomes 

2(27--F-) ]e,m IOUx] 1_ 2 [~_2Ux] 1 t"~?_Ux] I ~f2Ux' 1 ] 
U0 - U , , =  3 t-V~-z]o-~ l .... It  ezZ]o ÷-~t, @ ' z ] 0 i - 2 t  i'x2]0J " (21) 

Equation (16), correct to terms of second order, is 

1 OUz eUx 
r = ) p f L , m  ~z =t* ~ (22) 

where the subscripts 0 have been dropped because the equation is assumed applicable 
throughout the gas. Terms containing second derivatives are zero in equation (22). The 
Navier-Stokes equations can be derived from equation (22) and are thus applicable in the 
present analysis where second-order boundary conditions are used. It is significant that the 
Navier-Stokes equations give better results for rarefied gases or for large velocity gradients than 
certain other approximations, for instance, the Burnett equations [1]. 

From equation (22), 
ie,,. -= 3~,/(p,~) 

and, since p - -  p/RT for a perfect gas, and f = (8RT/rr) 1/2 [equation ( 6 ) ] ,  

le,ra =23 J(zr)2  ffv'RTp .... (23) 

Thus, equation (21) becomes 

U C r )  ( 2 -  F)ff~/RT fOUz t 9zr [tzv/RTi2 r(o2ux~ 
Uo -- v,o = - - . -~2 F p t a T ] o - -  i - 6 t - p - ]  I_t az2 1o + 

 {0'u i 1 H %  ] 
2 t OY 2 ! o + }. t ~xi] oJ" (24) 

Equation (24) is written in terms of measurable quantities. The first term on the right-hand side of 
equation (24) is the usual first-order slip term [6 (p. 296)], and the second term gives the 
second-order contributions. Equation (24) applies for a wall below the gas. For a wall above 
the gas, a similar derivation gives. 

/['~] (2 -- F) #zv'RT (OUx] 9rr ['#,v'RT] z [[O!Uz] 
Uw-- U0 = ~ / t 2  ! F p 1 c')z ]0 4- 16 ~--p--- ] I t  /9z2 10 -p- 

l?Wq ] 
2 \ c~y 2 ]0 + 2 t c3-v2/o J" (25) 
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Equations (22), (24), and (25) are the equations for second-order rectilinear slip flow according 
to the present method of analysis. They differ somewhat from those of reference 2. For 
instance, the numerical coefficient on O~Uz/~z e in equation (24) differs from that in reference 2, 
and the second derivatives with respect to x and y are absent in the corresponding expression in 
reference 2. It appears, however, from the present physical derivation that those derivatives should 
have an effect. 

Equations (22), (24), and (25) were derived on the assumption that the flow is rectilinear. If  the 
fluid does not move in straight lines, as for concentric rotating cylinders, the area element 
dA will rotate, and the molecules crossing it will appear to have a different Ux than they would 
have if the fluid were moving in straight lines. This effect can be taken into account by re- 
placing aUz/az in equations (22), (24), and (25) by OUx/Oz + a, = OUz/Oz, + OUUSx, and 
~zU~l~z2 by 02Uz/~z2+ &o/Oz=~2Uxl~z2+ ~Uzl~xOz, where ~o is the angular velocity 
of dA. Equation (22) then becomes 

r =1* l ~ - z  q- ~o = V  + (22a) 

which is the generalized expression for shear stress used for deriving the Navier-Stokes 
equations. Similarly, equation (24) becomes 

-;~ p / t  ~z/0 
] 9~r~--~--T) z[[02Ux~ 

+ o,o - i~  Lt Oz~ }o + 

(~oJ) l [02Uz\ 1 [~zUx~ ] 
(24a) 

ENERGY TRANSFER 
The analysis of energy transfer is somewhat analogous to that of momentum transfer in the 

preceding section. Here, the energy carried by molecules across an area element dA is con- 
sidered. (See Fig. 1.) The number of particles dZv in the velocity range dv that pass through 
dA per unit time and make an angle with the z-axis between 0 and O + dO and a polar angle 
between q~ and ~ + d~ is again given by equation (1). First, the temperature of the gas is assumed 
to be uniform. Then, the energy carried across dA by molecules that are in the velocity range 
dv and move at an angle to the z-axis between O and 0 + dO and at a polar angle between ~ and 
q~ + d~ is 

dEv = [(1/2) my z + mIo] nofo dv v cos O dA sin 0 dO d$/(4rr) (26) 

where mIo is the internal energy of the molecules (energy other than translational). Integration of 
equation (26) over all molecular speeds with I0 independent of molecular speed gives 

dE = dA (sin O c°s O dO d~) (I I°° I v ) 4*r no ~ m vafo dv + mlo tfo dv = 
o o 

dA (sin O c°s O dO dqJ) n° [~ m(~)o + (27) 

Using equation (6) forfo gives the relation 

(~)o = (4/3) (t~)o (~)o (28) 
so that 

dE= [dA (sinOc°sOdOd~°~n°fi°] [~ (~)m(~)°+mI° 1 -] . . (29) 



688 R. G. DEISSLER 

As in momentum transfer, the quantity in the first bracket gives the number of molecules that 
cross dA from the given angle range per unit time. The quantity (4/3) (1/2)m(~)0 is the effec- 
tive translational energy, and mlo is the internal energy carried by each molecule. The factor 4/3 
appears in the expression for the effective translational energy because the molecules with 
large translational kinetic energy cross dA in greater numbers than do the slower moving ones. 
Equation (29) applies to a gas at a uniform temperature. If the temperature is not uniform, 
the molecules crossing dA will carry effective kinetic energy equal to (4/3) (l/2)m(~)~, where 
(1/2)m(~)~ is the average kinetic energy of molecules a distance le,~ from dA and /~,~ is the 
effective l for translational energy transfer. Similarly, the molecules will carry internal 
energy equal to mk,  which is the average internal energy of molecules a distance le,~ from dA, The 
quantity le,~ is the effective l for internal energy transfer and is not necessarily equal to le,t. 
Thus, equation (29) becomes 

? (s'n 0 4'Od0d l [43 +, 4 ,30  
Proceeding as for momentum transfer yields, in place of equation (10), 

• 

(v2) ~ -  : ) ~  I~'~,~ cos h-w 0 sin w 0 sin w-s 9) cos s q~ [ ~hv~ 
~ ~ h ~ w ) [ ( w -  s)[s! ...... @zk:-w--~yW,~OxS]o (31) 

h 0 w - 0  s : 0  

and 

It ~ '  len, cos h-w 0sin ~' 0sin ~°-s cf cos ~ ~p { ~Jhl 
/ . ~  , ._  (h - w)! 0~ - -  s)! s! ~ z h - ~ = ~ J 0  (32) 
h = 0  w=0 s = 0  

Substituting equations (31) andrm(32)]in equation (30) and averaging over all values ofle,t and le,~ give 

dE dA sin0cos0d0d~v no0o m 
4~r z..., ~ .~  (h - ~v)-] N 2 s)~. sT 

h = 0  w=0  s = 0  

~4-  [ 0~(1/2ve) _] r~ [ . . . . .  ~ ' /  _.] \ 
) l~, t LOzn_W 8yW_ s Oxsj ° + le, , ~8zh_w eyW_ s 8XS]oj. (33) 

Substituting for I~",~ and le~,~ from equation (12) (with le,m replaced by le,t or le,l) and integrating 
to obtain the total energy passing through dA from above give 

~o ~_~ h! f 4 l t  ̀  [ ~n(1/2 0 2 ) ] 
- mnov°_ d A N - '  ~ ~ (h ~ W)[ (w ~ s)! S~! ~3 ~,' tOz h-w 8y w-s 8xSJo dE+ 41r ~.~ / ' ~  

h=O w=O s=O 

[ ~_n_ I_ _ ~ \ [ ' /z[Z's inw+lOcosn-w+lOsinw-s~cossq~dqldO 
+ lr~,~ \Szn-W OyW-S 8x s] oJ 3o 30 

8hl (34) 

h - 0  w=0  s ~ 0  

where ~2 (h, w, s) is again given by equation (14). The change in total thermal energy of a molecule 
is d[(1/2)mv~+ mI] = rncv dT, where cv is the specific heat at constant volume and T is the 
temperature. After Eucken [4], cv is written as cv,~ ÷ cv,~, so that d(1/2 v ~) = cv,t dT and 
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dI = cv,~ dT. If  the variation of Cv,~ with temperature for derivatives of higher order than the 
first is neglected, equation (34) then becomes 

2 2 2  ( ) ) . . . . .  4_ { OnT ' (35) dE + poZ3016~rdA £2 (h, w, s) 3 l~. t Cv,t 4- len.i Cv,~ \Ozn_ w Oyw_ s ~x s o 
h--0 w=0  s- -0  

for the energy crossing dA from above. Similarly, the energy crossing dA from below is [equation 
(15)1 

2 2 2  ) ) dE-  poOo dA [__ OAT 
-- 1 6 ~ r  (-1)n-w12(h,w,s)(431he.tCv,t4-lneaCv,, ~Ozh_WOyw_,~xS ° (36) 

h=O w=O s=O 

The net energy or heat transferred in the direction z is 

dE-  -- dE + 
qz -- dA 

o r  

polo ~ '  ~ 4 .  OhT (37) 
qz -- ~ ~.~ [1 -- (--  1) n-w] s'2 (h, w, s) j l~. t cv,t 4- ]he.~ cv,* az n-w Oy w-s axS o 

h = 0  w = 0  s : 0  

In order to obtain the effect of a wall on the heat transfer, we assume first, that there is a gas 
below dA at the uniform temperature Tw. Equation (36) then yields, for dE- ,  

1 (4 
dE-  = ~ OOOO dA 3 Cv,~ + Cv,O Tw (38) 

If  the term for n = 0 is extracted from the summation in equation (35) and equation (38) 
is subtracted from that equation, 

1 ( 4 3  ) 2 7  ~_~ (~ dE + -- dE-  = 4 p0v0 dA cv,t %- cv,~ (To -- Tw) 4- pof~o dA 1 ~  , f2 (h, w, s) lhe.t Cv,t + 
h = l  w--0 s--0 

Oz ~-w Oy w-8 0x 8] o" (39) 

If  a wall at temperature Tw, rather than a uniform gas, is placed below dA, the accommodation 
coefficient a is defined by 

dE + -- dEr 
a -- dE + _ dE-  (40) 

where dEr is the energy reflected from the wall. As in the case of F [equation (19)], the accommo- 
dation coefficient a is regarded as a quantity to be determined by free-molecule flow experi- 
ments, inasmuch as its value depends on many variables and is difficult to predict [7]. But 
dE + -- dEr, the net energy transferred through dA in the z-direction, is --dA times the heat 
transfer per unit area and is given by equation (37). Setting --qz dA = dE + -- dEr in equation 
(37), substituting that equation and equation (39) in equation (40), and solving for To -- Tw give 

1 2 2  ~ [(4/3)]~'cv't+le'~.'cv'd( ~nT ) 1 - -  (-- llh-w -- a O (h' w' s) ~ ~v,t q- Cv,, To -- Tw = ~ / t a Oz h-w Oy w-s ?x s o" 
h = l  w = 0  s = 0  

(41) 
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if only terms through second order are retained, 

2 ( 2 - - a )  [(4/3)le,t Cv,t ~-le,~ Cv,~] (aT) .... 1 [(4/3)/e, ~_~_v,t r l~. !}v,~] 
To - Tw = j - ~ t t  " (-4i3) Cv,t 4- cvd ~z o 2 (4/3) cv,t 4- cv,i 

"< [l, Vdza]o + 2 \ ayZ]o ÷ [2 ~ax~]0J ' 
(42) 

The heat transfer, correct through terms of 
second order, is given by equation (37) as 

qz = - -  ~ pO le,t c,,,t + i~,~ c,,,,  -az - -  - -  k ~ z  

(43) 
o r  

,(4, ) k = 3 pO -3 e,t Cv,t 4- le,~ Cv,~ (44) 

The subscripts 0 have again been dropped 
because equation (43) is assumed to apply 
throughout the gas. For a monatomic gas, 
equation (44) becomes 

4 
k m =  9 pO le,t Cv,t (45) 

But km is related to t~ and Cv,t by 

5 
km = 2 ~*cv,t (46) 

[6 (p. 178)]. From equations (45) and (46), 

45 t* 

o r  

45 / { r c ] l x~ /R T  (47) 
le,t = 16 ~/  ~2] p 

Following Eucken [4], it is assumed that internal 
energy is transferred in the same way as mo- 
mentum, so that, by equation (23), 

3 %/(w)/~v/RT ~ (48) 
i,,~ = ~z 2 p 

Eucken also assumed that Cv,t = (3/2)R, that is, 
that the transfer of translational energy is 
unaffected by the presence of internal energy. 
Since Cv = Cv,t + Cv,i and cv = R/(7 --  1), 

3 ( y - -  1) ( 5 - -37 )  
Cv,t - 2 Cv, cv,t = 2-  Cv 

Equations (44), (47), (48), and (49) give 

(49) 

1 
k 4 (9y -- 5) gCv (50) 

which is Eucken's formula and has been found 
to give results for most gases that are in good 
agreement with experiment [6 (p. 180)]. Substi- 
tution of equations (44), (47), (48), and (49) in 
equation (42) gives 

( 2 -  a) 7 ~ v ' R T  lOT" l 9rr ( 1 7 7 y -  145)[~x/RT'I~ 
To Tw V(2,0  a (y + 1) e r  p ~ o - ~ 6  -7 + i -  

x L~,Oz~]o + 2 ~21o  + 2 \Ox2loJ 

for a wall below the gas. A similar derivation gives 

/,,, , ( 2 - - a )  7 I ~ / R T  (cgT) 9rr (1777--145)(~_{RT) 2 
Tw -- To Vt.~rr) - - a  ( y - +  i) Pr p . .-~z o + 256 7 + 1 

X ~ 

FlOaT\ 1 [OZTX 1 {~ZT] ] 

(51) 

(52) 
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for a wall above the gas. Equations (43), (51), 
and (52) are second-order equations for heat 
transfer in a rarefied gas according to the 
present method of analysis. The application of 
these equations and those in the preceding 
section to several problems will be given in the 
following sections. 

PLANE COUETTE FLOW AND HEAT TRANSFER 

For plane Couette flow with frictional heating 
neglected, the shear stress and heat transfer are 
independent of the distance from a wall. Thus 
equations (22) and (43) become 

u ~  - u 1  = -~z/~ (53) 
and 

qzz (54) T - -  71 : - - - ~ -  

Using velocity and temperature jumps at the 
two walls calculated from equations (24), (25) 
and (51) to (54) yields 

(Uw,2 -- Uw,1) t~ ~/(2~r) (2 -- F) t~v'RT . 
~'L = F ~ - t - I  

(55) 

and 

(Tw,1 -- Tw,2) k qzL : 2~/(2rr)(2 -- a) 7 
a (7 + 1) Pr 

-----[I~v'RT~ + 1 (56) 
t p L ]  

where L is the distance between the two walls 1 
and 2, and F and a have the same values for the 
two walls. The results in this case are the same 
as those for the first-order analysis. This is, of 
course, because the velocity and temperature 

profiles as given by equation (53) and (54) are 
linear. The velocity results are in good agree- 
ment with experiment [1 (p. 721)]. 

FULLY DEVELOPED FLOW AND HEAT 
TRANSFER IN PASSAGES 

For fully developed flow in a tube, the shear 
stress varies linearly with distance from the 
centerline, so that equation (22) becomes 

r dUx 
- ~ ' 0  =-  - - I  ~ ro dr 

or  

TO 
Ux -- Uo -- 2~0(r  ~ -- r~) (57) 

The derivatives in equation (25) can be calculated 
by setting r 2 = z 2 + yZ in equation (57) and 
letting y = 0 after differentiation. Then the 
velocity of the gas at the wall is, with Uw : O, 

N / ( ~ r ) ( 2 - - F )  ~ v / R T  " o +  
U 0 :  2 F p tz 

27" ? /Rri2_ o (58) 
+ 32 I p ] t~r0 

The bulk or mixed mean velocity for flow in a 
tube is 

f~" Uxr dr 
U~--  ~o. r d  r 

or, from equation (57), 

1 7oro 
Vb : U0 q- ~-~-  (59) 

From equations (58) and (59), 

+oro 1 
4.Ub -- 1 + 2 V ' ( 2 ~ r ) ~  ( l ~ v ' R q  + 27zr [I~x,/RT~ 2 (60) 

\ p r o /  8 - ~  p r o /  

A plot of equation (60) for F : 1 is given in Fig. 2. The term on the left-hand side of equation (60) 
is the same as the ratio of the actual pressure drop for the tube to that for continuum flow 
at the same velocity, if the pressure drop is small compared to the absolute pressure and 
entrance effects are small. These conditions are approximated in the data from reference 8 for 
hydrogen flow through a copper tube, and those data are included in Fig. 2 for comparison. 
These data are also representative of those for flow through glass tubes [8]. It is assumed 
that F :  1 for the data throughout the entire range of pressures, inasmuch as F :  1 
in the free molecular region. Also included is the curve for first-order slip flow obtained 



692 R. G.  D E I S S L E R  

Continuum flow Present analysis ( F : I )  
1.0- 

~ " ~ ' ~ 3 ~ , . - ~ , ~  \ \  First- order slip 

L~0.6 ~ "~ "--. 

Hydrogen in copper tube [8] 

0,2 I ~ ~ 1 1 
001 0"02 0,04 0"06 0.080'4 0.2 

I • ~/RT / 2  T 

-p-~o . . . . .  4 , ,  ro 
Fro. 2. Comparison of present analysis of fully 
developed second-order slip flow in tubes with 
first-order analysis and experimental data. (Diffuse 

reflection at wall.) 

by neglecting the last term in the denominator 

of the right-hand side of equation (60). "Fhe 
predicted curve for second-order slip flow 
appears to be in considerably better agreement 
with the data than does that for first-order slip, 
although there is some scatter in the data. When 
t~,~/(RT)/pro is on the order of 0.2, for which the 
analysis applies reasonably well, the difference 
between the first- and second-order equations is 
about 20 per cent. For values o f  t~,C(RT)/pro 
greater than those shown, the predicted values 
begin to deviate considerably from the data, and 
a second-order slip flow analysis evidently is not 
applicable. 

If flow between parallel plates is considered 
rather than flow through a tube, derivatives with 
respect to y are absent, and in place of equation 
(6o) is 

,ozo 1 
3[t-~]~ = : - [[~r-~ (2- ~ F)~Izw/R~.  \ 27= [tz~/l~T~., " (61) 

' + ) 

where z0 is the half distance between the plates and 

_![ 
Uo zo Jo Uz dz  

Consider next the fully developed heat transfer in a tube with uniform wall heat flux. First-order 
slip flow for this case has been considered in reference 9. If axial conduction is neglected, the 
energy equation can be written for fully developed flow as 

~T 1 ~ (  ) c0T 
Ux &v = a r br r ~r (62) 

For uniform wall heat flux, OT/Ox is independent of r, and with the use of equation (57), 
equation (62) can be integrated to give 

T - -  To a - - ( r2  -- r~) 342to(r4 - -  4r~r '~ + 3ro 4) (63) 

The derivatives in the expression for the temperature jump at the wall [equation (52)] can be 
obtained by substituting r z = z z 4,. yZ in equation (63) and letting y----0 after differentiation. 
Equation (52) then becomes 

[V/(2~r)2 ( ~  -0r~] 9rr (177y--145) Tw --  To - -  OT/Ox --  a y I ~ / R T  o + 4- 
-~ a (y 4- 1) Pr p - -  8l~ ] 256 y 4- 1 

1 ,0r_0]] (64) 
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The bulk or mixed mean temperature for flow 
in a tube is 

To ~ro° TUxr dr (65) 
-- fro° Uzr dr 

With the use of equations (57) and (63), 

T~-- T o =  

~T = [ I 1 ~oUoro l.l ~-Irl~ 
c3-x ro I - -  i U°2 3 /~ 192 /z2 ] (66) 

1 

or 

T ~ - - T ~  T w - - T o +  

~T 3 (11  1Uol~ . 1U~l~2~ 
~x 70% \ ~ + -3-co r~o -t- 2 - r ~ -  } 

(67) 

Writing a heat balance on a cylindrical element of 
fluid of radius r0 gives 

~T 2qo 
(68) 

8x ro p Uocv 

where qo is the heat transfer per unit area from 
the wall to the gas. Substituting equation (68) 
in (67) and using the definition for Nusselt 
number, Nu : 2qoro/k(Tw- Tb), and equation 
(59) for U0 gives 

1 (Tw - -  To) k 

Nu -- 2q0r0 + 

11[  6 4 ~  96 (Uo~I2 ] 

4-8 1 + 1 1 - -  + 1 1  \'#oro/ J (69) 

(1 + 4 U°/ztz 
~oro] 

The first term on the right-hand side of equation 
(69) is obtained from equations (64), (58) and (59) 
as 

2q0r0 -- 2 a (~ + 1) Pr 

tzv/RT 9zr (177~,- 145) 
pro 1024 ~, + 1 

1 - -  12 U0/~ 

1 + 4 Uot~ \ P ~ o  : (70) 
'70 r0 

and, from equation (58), 

roro F pro 

27~ I/~_RTI 2" (71) 
+ ~32 \ pro / 

From equations (71), (70), and (69), Nusselt 
number can be calculated as a function of 
tz~/(RT)/(pro). The ratio Nu/Nuc, where 
Nuc : 48/11, is plotted against ~x/(RT)/(pro). 
in Fig. 3. Curves are shown for y - - 1 . 4 ,  
Pr : 0.7, F----1, and for a : 1 and 0.5. 

1.0 

.~ ~ ~ --.. 

A . I I 
o.o, o.o  o.o4o.o o.=o., 

7. 

FIG. 3. Fully developed Nusselt number ratio for 
flow in a tube at uniform wall heat flux. F = 1 ,  

~, = 1.4, Pr = 0.7. 

These values for ~, and Prandtl number 
correspond approximately to air and most 
diatomic gases. Included for comparison are 
curves for first-order slip flow and temperature 
jump. Second-order effects in this case are 
somewhat less than those in Fig. 2; however, the 
differences between the first- and second-order 
equations are still on the order of 15 per cent at 
a value of iz~/(RT)/(pro) of 0.2 and an a of 1. 
The differences are less for smaller values of a. 

SUMMARY OF RESULTS 
The effects of second-order normal and tan- 

gential derivatives on the velocity and tempera- 
ture jumps at a wall in a rarefied gas were 
considered. Use was made of effective mean free 
paths for momentum and energy transfer that 
differ from the actual mean free path because of 
factors such as persistence of velocities, de- 
pendence of free path on velocity, etc. The 
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effective mean  free paths  were  related to vis- 
cosi t ies  and  o the r  measu rab l e  quant i t ies .  The  
usual  N a v i e r - S t o k e s  and  energy  e q u a t i o n s  in 
the  gas was shown to be cons i s ten t  wi th  the  use 
o f  s e c o n d - o r d e r  b o u n d a r y  cond i t i ons  since, 
a c c o r d i n g  to the analysis ,  the  s e c o n d - o r d e r  t e rms  
are  ze ro  in the  in te r ior  o f  the  gas [equa t ions  (22) 
and  (43)]. The  ve loc i ty  and  t e m p e r a t u r e  j u m p s  
at the  wal ls  are  g iven  by e q u a t i o n s  (22), (24), 
(22a), (24a), (51) and  (52). The  results  agree  
wi th  e x p e r i m e n t  at  s o m e w h a t  lower  densi t ies  
t han  does  the usual f i rs t -order  analysis .  
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R~um6--Les effets des termes de second ordre sur les sauts de vitesse et de temp6rature ~ une parDi 
sont obtenus par une d6rivation physique. L'analyse emploie les concepts des libres parcours moyens 
effectifs pours le transport de quantit6 de mouvement et d'6nergie, on obtient les libres parcours 
moyens effectifs ~ partir des viscosit6s et des conductivit6s thermiques connues. L'analyse de l'6coule- 
ment de glissement du second ordre s'applique ~. des pressions bien plus basses que l'analyse du 
premier ordre et s'applique aussi bien it des gaz polyatomiques qu'it des gaz monoatomiques. 

On consid~re plusieurs exemples illustratifs incluant l '~oulement enti6rement d6velopl~ et te trans- 
port de chaleur dans un tube. On a remarqu6 les diff6rences de l'ordre de 20 pour cent entre les cor- 
rections du premier et du second ordre dans la r6gion pour laquelle l'analyse semble s'appliquer. 

Zusammenfassung--Die Einfliisse von Ausdrilcken zweiter Ordnung auf Geschwindigkeits- und 
Temperaturspriinge in Wandn~ihe liessen sich mit Hilfe einer physikalischen Ableitung erhalten. 
Die Analysis beniitzt das Konzept der effektiven mittleren freien Weglfingen fiir den Impuls- und 
Energietransport; diese effektiven mittleren freien Wegl~ngen wurden aus der bekannten Viskosit~it 
und Warmeleitfiihigkeit ermittelt. Die GleitstrSmungsanalysis zweiter Ordnung ist fiir etwas 
geringere Driicke anwendbar als die Analysis erster Ordnung und gilt~ sowohl fiir einatomige als 
auch (fir mehratomige Gase. Verschiedene anschauliche Beispiele auch fiir voll ausgebildete StrOmung 
und ausgebildeten Warmeiibergang im Rohr werden angegeben. Differenzen zwischen den Kor- 
rekturen erster und zweiter Ordnung wurden im Bereich in dem die Analysis anwendbar erscheint 

in der GrSssenordnung von 20 Prozent festgestellt. 

AHHOTaIIH}I--IJJIHHItHe q~eHOB BTOpOFO nopn~Ka ua cnaqgH cHopocTH H TeMIIepaTyl)bI Ha 
CTeHI~e no~yqeIto c nOMOUlbtO O~3HqecRoro ~uqb(0epeum~poBanHn. HpH aga:l~i3e HCHO~b,~ymTCU 
nOU~TI~g 3O~eKTI4BHbIX cpe~HHX ~yTei~ cno60~uovo npo6era ~ A  nepeaoca HMny~bca H 
unepr~a; oOOeHTI4BHbIe cpe~u~e CBO60~HI~Ie nyT~ npo6era uo3yqen~ no H3BeCTIIt,IM 3HaqeHI4~IM 
BHBHOCTe~I I~ Ten~onpoBo~HocTel~. Aga~g3 eKoJIbaHulero ITOTOHa BT(~poFo po~a gp~Me[tgeTcn 
npa ~aBJIeHHFIX HeMHOFO MeHbIIII4X, qeM npn a H a ~ a e  nepBoro pona a npllMeHgeTCfl t~aH t; 
MtIOPOaTOMHI,IM, TaR ~I ~ O~ffOaTOMH~I~ raaa~.  IIoRaaago tIecgoJ~bgO np~Mepon, np~qeM 
paccMowpe~o r[o~OCT~,m paan~TOe weqei~e a ~en~oo6Mea B Tpy6e. OTMeqa~Cb pa3HOCTll 
Merely nonpan~¢aMr~ r~epaoro u nToporo n o p r ~ a ,  r~p~5~3~Te~,I~O oKo~o 20°/o n ofisiaevtt, 

~i~i l~OTOpOl~ upn~enn~cfl 0TOT a n a t , 8 .  


